FABOX.RU                   
дипломы,курсовые,рефераты,контрольные,диссертации на заказ
Рефераты Экономико-математическое моделирование

Просмотр реферата - Исследование законов предельной производительности

Исследование законов предельной производительности


Скачать реферат Исследование законов предельной производительности в zip архиве





ПЛАН

I. Введение.

II. Теоретическая часть по теме предельная производительность.

III. Используемая литература.

ВВЕДЕНИЕ

Производственная функция (ПФ) выражает зависимость результата производства от затрат ресурсов. При описании экономики (точнее, ее производственной подсистемы) с помощью ПФ эта подсистема рассматривается как "черный ящик", на вход которого поступают ресурсы R1, ..., Rn, а на выходе получается результат в виде годовых объемов производства различных видов продукции Х1, ...Хм.

В качестве ресурсов (факторов производства) на макро уровне наиболее часто рассматривается накопленный труд в форме производственных фондов
(капитал) К и настоящий (живой) труд L, а в качестве результата - валовой выпуск и обозначать Х, хотя это может быть и валовой выпуск, и ВВП, и национальный доход.

Выбор того или иного состава К определяется целью исследования, а также характером развития производственной и непроизводственной сфер в изучаемый период. Если в этот период в непроизводственную сферу вкладывается примерно постоянная доля вновь созданной стоимости и непроизводственная сфера оказывает на производство примерно одинаковое влияние, это служит основанием напрямую учитывать в ПФ только производственные фонды.

Производственные фонды состоят из основных и оборотных производственных фондов. Если соотношение между этими составными частями производственных фондов примерно постоянно в течение всего изучаемого периода, то достаточно напрямую учитывать в ПФ только основные производственные фонды. Далее К будем называть фондами.

Таким образом, экономика замещается своей моделью в форме нелинейной
ПФ

X=F(K, L), т.е. выпуск (продукция) есть функция от затрат ресурсов (фондов и труда).

Возникает вопрос: как с помощью ПФ выразить масштаб и эффективность производства? Это сравнительно легко сделать, если выпуск и затраты выражены в соизмеримых единицах, например представлены в соизмеримой стоимостной форме. Однако проблема соизмерения настоящего и прошлого труда до сих пор не решена удовлетворительным образом. Поэтому воспользуемся переходом к относительным (безразмерным) показателям.

В относительных показателях мультипликативная ПФ записывается следующим образом:

X K ?1 L ?2

X0 K0 L0

(1)
Где Х0, К0, L0 - значения выпуска и затрат фондов и труда в базовый год.

Безразмерная форма (1) легко приводится к первоначальному виду

Х0

Х= K?1 L?2 = AK?1L?2

К0?1 L0?2

Х0
Таким образом, коэффициент А = получает естественную

К0?1 L0?2 интерпретацию - это коэффициент, который соизмеряет ресурсы с выпуском.

Если обозначить выпуск и ресурсы в относительных (безразмерных) единицах измерения через X, K, L, то ПФ в форме (1)записывается так:

X=K?1 L?2 (2)

Найдем теперь эффективность экономики, представленной ПФ (2)
.Напомним, что эффективность - это отношение результата к затратам. В нашем случае два вида затрат: затраты прошлого труда в виде фондов К и настоящего труда L. Поэтому имеются два частных показателя эффективности:

Х Х

- фондоотдача, - производительность труда.

К L

Поскольку частные показатели эффективности имеют одинаковую размерность (точнее, одинаково безразмерны), то можно находить любые средние из них. Так как ПФ выражена в мультипликативной форме, то и среднее естественно взять в такой же форме, т.е. среднегеометрическое значение.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ ПО ТЕМЕ "ПРЕДЕЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ"

Хотя предмет микроэкономической теории производства иной - проблемы производственной деятельности предприятий, ход рассуждений здесь очень близок к теории потребления. Функциям полезности и кривым безразличия, описывающим потребление, соответствуют и изокванты, описывающие производство. Более того, свойства этих функций и формы кривых одинаковы.
Следовательно, в программах построения графиков кривых безразличия и приближенных вычисления по методу численного дифференцирования, составленных для исследования потребления, достаточно поменять лишь заголовки, названия переменных и определения функций, чтобы применить весь арсенал уже имеющихся у нас средств для анализа производства.

Начнем с того, что определим производственную деятельность как процесс, в ходе которого предприятия затрачивают различные ресурсы - вещественные блага и услуги (факторы производства), например труд и капитальное оборудование, и в результате выпускают разнообразную, ориентированную на рынок продукцию (продукты производства). Отправной точкой микроэкономической теории производства является идея о том, что технологически эффективная производственная деятельность предприятия, в ходе которой для выпуска, например, одного вида продукции Y затрачивается два вида ресурсов Х1, Х2, может быть описана с помощью производственной функции Y=F(X1, X2). Если для фиксированного выпуска Y изобразить на плоскости (Х1, Х2) все возможные сочетания необходимых ресурсов (Х1, Х2), мы получим кривую, называемую изоквантой. Так же как и для функций полезности и кривых безразличия, можно выделить, по крайней мере, четыре типа производственных функций и изоквант.

1. Функции с полным взаимозамещением ресурсов, например,

Y=a1X1+a2X2

2. Неоклассическая производственная функция, например,

Y=X1a1X2a2, a1+a2aiy1+biy2, i=1,2.

Не трудно заметить, что формы этих функций полностью совпадают с формами функций полезности. Если говорить о неоклассической производственной функции, то понятию предельной полезности из теории потребления и теории производства соответствует понятие предельной производительности (dY/dXi), которое является здесь одним из ключевых.
Законы же убывающей предельной полезности и убывающей предельной нормы замещения, потребительских благ в теории производства сформулировонны как закон убывающей предельной нормы взаимного замещения ресурсов. Первый из них гласит, что при росте затрат одного из ресурсов (первого или второго) его предельная производительность, dY/dX1 или dY/dX2 , падает. Если представить этот факт в виде формулы, то мы получим:

d2Y/dXi2





Обзор других работ по экономико-математическому моделированию



Использование электронных таблиц в экономических расчетах

указания столбца, обозначенного буквами латинского алфавита и номера строки, например, С8,
Е64,…. Ссылка на ту или иную ячейку при составлении формул производится по адресу этой ячейки.

Электронные таблицы могут применяться на любых рабочих местах, на которых требуется производить некоторые расчеты и печатать выходные формы.
Наиболее часто расчеты производятся на рабочем месте экономиста, бухгалтера.

Из электронных таблиц наиболее распространены Super Calc для компьютеров, работающих с операционной системой MS-DOS, и не имеющих возможности работать с графической операционной системой Windows; и
Microsoft Excel, предназначенный для машин, работающих с операционной системой Windows’95 (Windows’98, Windows-NT, Windows’2000) или с операционной системой MS-DOS и установленным Windows 3.1.

При написании курсовой работы были использованы электронные таблицы
Microsoft Excel’97.

Глава 1. Постановка задачи.

В данной главе рассматривается конкрет   Читать       

Исследование эмпирической зависимости

а имеет очень сильные колебания, что не позволяет с большой точностью отследить тенденцию графика. В следствие этого будет построен график обратного темпа интеграла степенной функции, имеющий более сглаженные колебания и позволяющий достаточно точно определить тегнденцию графика. График обратного темпа интеграла в идеальном случае имеет вид прямой с коэффициентом наклона равным В, которая пересекает ось абсцисс в точке t0.

Интеграл степенной функции вычисляется по формуле :

Y = Xґ(t – t0)B+1/B+1 .

А обратный темп роста интеграла равен:

Yґ/Y = X/Y = (B+1)/(t – t0) .

Коэффициент наклона прямой В может быть найден из графика по формуле:

B = ctg( - 1 , или, другими словами, разности отношения приращения аргумента ((1) к приращению функции ((2) и 1.

Обратный темп интеграла степенной зависимости рассчитывается по формуле:

Y/Yґ = ((X(t)/X .

Эмиграция в США
Эмиграция в США из Центральной Европы из СССР и стран
Балтии

   Читать

  
© 2000 — 2017, Все права защищены