FABOX.RU                   
дипломы,курсовые,рефераты,контрольные,диссертации на заказ
Рефераты Наука и техника

Просмотр реферата - Автоматизированное проектирование станочной оснастки

Автоматизированное проектирование станочной оснастки


Скачать реферат Автоматизированное проектирование станочной оснастки в zip архиве





                                                                                                                                                                                                   

                                                                                                                                                                                                        

Министерство   образования  Российской  Федерации

Новосибирский  государственный  технический  университет


Кафедра  СВС


БАКАЛАВРСКАЯ РАБОТА

ТЕМА :

Автоматизированное проектирование станочной оснастки.

Факультет :  ЛА

Группа :  С-72

Студент :  Варфоломеева  М.О.

Руководитель : Нарышева  Г. Г.

Новосибирск , 2001 г .

Содержание :

1. Введение……………………………………………………………..3

1.1. Станочные приспособления - классификация,виды…3

1.2. CAD/CAM системы – что это ?………………………..6

2. Методология проектирования  станочной  оснастки :

2.1.     Традиционное  проектирование………………………8

2.2. Автоматизированное  проектирование………………14

2.3. Основные  функции  САПР  и  изготовления  технологической  оснастки…………………………...16

3. Основные характеристики  некоторых  существующих  CAD/CAM систем …………………………………………………22

              3.1.    bCAD……………………………………………………25

              3.2.    ГеММА 3D при производстве технологической

                        оснастки на оборудовании с ЧПУ…………………….34             

              3.3.    ADEM CAD/CAM……………………………………...37

3.4. Графика-81 …………………………………………….41

3.5      Базис 3.5. ………………………………………………45

3.6. Solid Edge ……………………………………………...56

4.  Создание  стандартных деталей в системе SolidEdge……………65

4.1. Палец установочный цилиндрический постоянный...65

4.2. Прихват предвижной фасонный……………………...67

5.  Заключение………………………………………………………….67

6.  Литература………………………………………………………….68

7.  Приложения………………………………………………………...70

 1. Введение .

1.1. СТАНОЧНЫЕ  ПРИСПОСОБЛЕНИЯ . КЛАССИФИКАЦИЯ , ВИДЫ .

 

1.1.1. Станочные приспособления .

   Основную группу технологической оснастки составляют приспособления механосборочного производства. Приспособлениями в машиностроении называют вспомогательные устройства к технологическому оборудованию, используемые при выполнении операций обработки, сборки и контроля.

Применение приспособлений позволяет:

- устранить разметку заготовок перед обработкой, повысить ее точность;

- увеличить производительность труда на операции;

- снизить себестоимость продукции;

- облегчить условия работы и обеспечить ее безопасность;

- расширить технологические возможности оборудования;

- организовать многостаночное обслуживание;

- применить технически обоснованные нормы времени и сократить число рабочих, необходимых для выпуска продукции.

 Частая смена объектов производства, связанная с нарастанием темпов технического прогресса, требует создания конструкций приспособлений, методов их расчета, проектирования и изготовления, обеспечивающих неуклонное сокращение сроков подготовки производства.

 Затраты на изготовление технологической оснастки составляют 15... 20 % от затрат на оборудование для технологического процесса обработки деталей машин или 10-24 % от стоимости машины. Станочные приспособления занимают наибольший удельный вес по стоимости и трудоемкости изготовления в общем количестве различных типов технологической оснастки.

2.1.1. Классификация  приспособлений .

 Классификацию приспособлений проводят по следующим признакам:

1. По целевому назначению приспособления делят на пять групп:

 - станочные приспособления для установки и закрепления обрабатываемых заготовок на станках. В зависимости от вида обработки различают токарные, фрезерные, сверлильные, расточные, шлифовальные и другие приспособления;

 - приспособления для крепления режущего инструмента. Они характеризуются большим числом нормализованных деталей и конструкций, что объясняется нормализацией и стандартизацией самих режущих инструментов;

 - сборочные приспособления используют при выполнении сборочных операций, требующих большой точности сборки и приложения больших усилий;

 - контрольно-измерительные приспособления применяют для контроля заготовок, промежуточного и окончательного контроля, а также для проверки собранных узлов и машин. Контрольные приспособления служат для установки мерительного инструмента;

 - приспособления для захвата, перемещения и перевертывания обрабатываемых заготовок, а также отдельных деталей и узлов при сборке.

2. По степени специализации приспособления делят на универсальные, специализированные и специальные.

 Универсальные приспособления (УП) используют для расширения технологических возможностей металлорежущих станков. К ним относятся универсальные, поворотные, делительные столы; самоцентрирующие патроны.

 Универсальные безналадочные приспособления (УБП) применяются для базирования и закрепления однотипных заготовок в условиях единичного и мелкосерийного производства. К этому типу принадлежат универсальные патроны с неразъемными кулачками, универсальные фрезерные и слесарные тиски.

 Универсально-наладочные приспособления (УНП) используют для базирования и закрепления заготовок в условиях многономенклатурного производства. К ним относятся универсальные патроны со сменными кулачками, универсальные тиски, скальчатые кондукторы.

 Специализированные безналадочные приспособления (СБП) используют для базирования и закрепления заготовок, близких по конструктивным признакам и требующих одинаковой обработки. К таким приспособлениям принадлежат приспособления для обработки ступенчатых валиков, втулок, фланцев, дисков, корпусных деталей и др.

 Специализированные наладочные приспособления (СНП) применяют для базирования и закрепления заготовок, близких по конструктивно-технологическим признакам и требующих для их обработки выполнения однотипных операций и специальных наладок.

 Универсально-сборные приспособления (УСП) применяют для базирования и закрепления конкретной детали. Из комплекта УСП собирают специальное приспособление, которое затем разбирают, а элементы УСП многократно используют для сборки других приспособлений.

 Специальные приспособления (СП) используют для выполнения определенной операции и при обработке конкретной детали. Такие приспособления называются одноцелевыми. Их применяют в крупносерийном и массовом производстве.

3. По функциональному назначению элементы приспособлений делят на установочные, зажимные, силовые приводы, элементы для направления режущего инструмента, вспомогательные механизмы, а также вспомогательные и крепежные детали (рукоятки, сухари, шпонки). Все эти элементы соединяются корпусными деталями.

4. По степени механизации и автоматизации приспособления подразделяют на ручные, механизированные, полуавтоматические и автоматические.

 Современные  приспособления - это большой класс технологических объектов, отличающихся многообразием конструкций, многокомпонентностью и иерархичностью структуры, сложной геометрией составляющих и широким диапазоном изменения размеров, различной степенью универсальности и типовности.

 Для авиапроизводства характерным является то, что среди большого объёма создавамых конструкций удельный вес типовых приспособлений весьма невысок. Поэтому проектирование невозможно свести только к размерным и некоторым другим расчётам. В принципе, это цельный комплекс серьёзных проблем и задач, к решению которых необходимо привлекать современные методы и средства автоматизации.

1.2. CAD/CAM СИСТЕМЫ – ЧТО ЭТО?

  CAD/CAM системами на западе называют то, что в странах бывшего СССР принято было называть аббре-виатурой САПР, то есть Системы Автоматизированного ПРоектирования. Впервые термин СAD прозвучал в конце 50-х гг прошлого века в Массачусетском технологическом институте в США. Распространение эта аббревиатура получила уже в 70-х гг как между-народное обозначение технологии конструкторских работ. С началом примения вычислительной техники под словом CAD подразумевалась обработка данных средствами машинной графики. Однако этот один

термин не отражает всего того, что им иногда называют. Например,САПР могут предназначаться для: черчения,для прочерчивания (эскизирования) или и для того, и для другого сразу. Сама же аббревиату-ра CAD может расшифровываться так: Computer Aided Design,или Computer Aided Drafting (проектирование и конструирование с помощью ЭВМ или черчение с помощью ЭВМ).Понятия «конструирование» и «черчение с помощью ЭВМ» - всего лишь малая часть функций, выполняемых САПР. Многие из систем выполняют су-щественно больше функций, чем просто черчение и конструирование. И существует их более точное обозначение :

 САЕ - Computer Aided Engineering (инженерные расчёты с помощью ЭВМ, исключая автоматизирование чертёжных работ).Иногда этот термин использовался как понятие более высокого уровня– для обозначения

всех видов деятельности, которую инженер может выполнять с помощью компьютера.

 CAM - Computer Aided Manufacturing. Программирование устройств ЧПУ станков с помощью CAD-систем отождествляют с понятием CAM (так называемые CAD/CAM системы).В иных случаях под САМ понимают применение ЭВМ в управлении производством и движением материалов.

 CAQ - Computer Aided Quality Assurance.Определяет поддерживаемое компьютером обеспечение качества, прежде всего программирование измерительных машин.

 САР - Computer Aided Planning – автономное проектирование технологических процессов, например, при подготовке производства.

 

 CIM - Computer Integrated Manufacturing – взаимадействие всех названных отдельных сфер деятельности производственного предприятия, поддерживаемого ЭВМ.

 

 При традиционном проектировании оснастки трудоём-кость работ составляет от 50 нормо-часов до нес-

кольких тысяч, а в общем – несколько миллионов. Испольование систем автоматизированного проекти-рования и изготовления оснастки позволяет не только снизить трудоёмкость, временные и денежные затраты, но освободить человека от большого коли-чества однообразной работы, например, от оформле-ния большей части документопотока.

 СAD/CAM-системы находят применение в широком ди-апазоне инженерной деятельности,начиная с решения сравнительно простых задач проектирования и изго-товления конструкторско-технологической докумен-тации и, кончая, задачами объёмного геометричес-кого моделирования, ведением проекта, управления распределенным процессом проектирования и т.п. Современные изделия можно создать только с ис-пользованием CAD/CAM-систем на всех стадиях про-ектирования, изготовления и эксплуатации.

 Разработка и создание CAD/CAM-систем является достаточно сложным и длительным процессом, тре-бует значительных затрат материальных и людских ресурсов. К сожалению, за последние годы государ-ственная политика по отношению к коллективам, создающим CAD/CAM-системы, резко изменилась. Из -за отсутствия централизованного финансирования практически прекращены новые разработки в этой области. Значительное количество коллективов –разработчиков распалось. В результате, например, среди отечественных машиностроительных CAD-систем   поставляемых на рынок, продавалось не более пяти 2D-систем и не более одной-двух 3D-систем. Пол-ностью отсутствовали системы для проектирования в радиоэлектронике, строительстве и архитектуре. В то же время значительные средства расходуются организациями на закупку дорогостоящих зарубежных CAD/CAM-систем.Пользователи на местах оказываются неподготовленными к применению этих систем,и иногда случается,что в одной организации скапли-ваются несколько типов дублирующих друг друга систем,порой практически неэксплуатируемых.

 Развитие отечественных CAD/CAM-систем и их широ-кое использование в промышленности позволит су-щественно сократить затраты на закупку таких сис-тем за рубежом и тем самым поддержать собственные

научные разработки в этой области.

2. Методология  проектирования  станочной  оснастки .

2.1. ТРАДИЦИОННОЕ ПРОЕКТИРОВАНИЕ .

2.1.1. Исходные данные .

 Разработка конструкции приспособления заключается в постепенном построении эскиза, выражающего идею приспособления, по контуру обрабатываемой детали. При конструировании приспособлений тщательному изучению и анализу подвергают обрабатываемую деталь, станок, на котором планируется оснащаемая операция, способ подвода режущего инструмента и охлаждающей жидкости, средства обеспечения установки детали, удаления стружки и др. Учитывают положение станочника относительно проектируемого приспособления и оборудования, размер партии деталей и планируемую производительность обработки, структуру технологической операции и режимы резания, вес заготовки,способ её загрузки и выгрузки.

 В процессе анализа обрабатываемой детали выделяют поверхности, подлежащие обработке в проектируемом приспособлении, поверхности, назаначенные технологическими базами и под зажимы. Изучают геометрическую форму, размеры, координаты взаимного расположения поверхностей, а также требования точности обработки.   

2.1.2. Порядок проектирования .

 Конструирование функциональных элементов приспо-собления создаётся постепенно по мере аналитичес-кого рассмотрения функциональных поверхностей обрабатываемой детали. При этом на стадии констру-

ирования каждой очередной фукциональной группы элементов осуществляется их увязка с решениями, полученными на более ранних стадиях.

 Наиболее общие методические указания по конструи-рованию приспособлений приведены в следующих пунктах:

1. Конструирование установочных элементов.

При анализе технологических баз (установочной,

направляющей, опорной) принимают решения о типах, размерах, пространственном положении и точностном исполнении установочных элементов станочного приспособления. Эти решения фиксирут на чертеже, содержащем изоборажение обрабатываемой детали. Конструкция установочных элементов приспособления зависит от формы, размеров, расположения и точности баз обрабатываемой детали.

2. Конструирование направляющих элементов.

В результате изучения обрабатываемых поверхностей детали принимают решения о конструкции элементов приспособления для направления режущего инструмен-та (кондукторных втулок в сверильных приспособле-ниях, установов в приспособлених для фрезерования и др.)

3. Конструирование зажимных элементов.

Конструкцию зажимных элементов и устройств приспособления определяют при проектировании после анализа формы и размеров поверхностей обрабатыва-емой детали, назначенных технологом под зажим. При этом учитывают силовые факторы, имеющие место в процессе обработки в приспособлении, а также требования производительности и экономичности конструкции.

4. Конструирование корпуса.

Осуществляют на завершающем этапе разработки приспособления. Конструкция корпуса в целом должна объединять все функциональные сборочные единицы и детали, иметь достаточную жёсткость, предотвращающую потери точности обработки детали.

2.1.3. Расчёты .

 К основным расчётам можно отнести расчёты зажимных усилий прихватов и различных зажимных устройств, расчётры пальцев на срез, погрешности базирования и экономические расчёты.

Примеры :

 а) Расчёт пальцев. Нередки случаи, когда в качестве технологической базы детали использую-тся цилиндрические отверстия (два или одно).





Обзор других работ по науке и технике



Квантовомеханическая система и её наглядная модель

илу своей природы. Движение квантового объекта по какой-то определенной траектории невозможно, так как мы имеем дело с голограммой объекта и это первично. В данной интерпретации движение представляется как изменение интерференционной структуры сразу во всех точках пространства.

Тогда, например, электрон "чувствует" все возможные пути, так как его голограмма занимает все пространство. Фиксация электрона детектором или "подглядывание" за ним влечет за собой разрушение его голограммы. Детектирование квантового объекта можно сравнить с освещением обычного голографического снимка опорной волной, т.е. квантовый объект обнаруживается в одном из базисных состояний.

Когда голограмма электрона изменяется в результате ее взаимодействия с детектором, то вполне естественно, что его импульс и энергия передается в какую-то точку детектора по вероятностному закону, так как любая часть голограммы содержит в себе всю информацию об электроне и в этом смысле равноправна со всеми остальными ч   Читать       

Нейросетевые методы распознавания изображений

звлекать такие характеристики и для образов, отсутствующих в обучающем наборе. Для СНС характерны быстрая скорость обучения и работы. Тестировании СНС на базе данных ORL, содержащей изображения лиц с небольшими изменениями освещения, масштаба, пространственных поворотов, положения и различными эмоциями, показало приблизительно 98% точность распознавания, причём для известных лиц, предъявлялись варианты их изображений, отсутствующие в обучающем наборе. Такой результат делает эту архитектуру перспективной для дальнейших разработок в области распознавания изображений пространственных объектов.

МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В [11] применялся нейросетевой детектор    Читать

  
© 2000 — 2017, Все права защищены